Meet our team

He received a MSc. degree in Railway Track Engineering from Iran University of Science and Technology (IUST). His MSc thesis was on Dynamic response of sleepers in ballasted railway track, in which, he developed a 3D model of train-track interaction by numerical methods to obtain dynamic responses mainly in sleepers. He is currently a PhD candidate of Structural Engineering at the Section of Railway Engineering, Delft University of Technology.

His research interests are:

    • Wheel-rail contact mechanics
    • Train-track dynamic interaction
    • Numerical methods
    • Finite element modelling
    • Reliability and probabilistic analysis

Development of high-Performance Rail through Intelligent Metallurgy and Engineering (PRIME)

The PRIME project aims at the development of a new generation of railway steel based on fundamental insight in the relations mechanical loading ↔ damage development ↔ microstructural features, from the point of view of both rail design and materials design. The objectives of the project are: 1) To develop fundamental insight in the relation between the conditions of mechanical loading, material properties and the development of damage; 2) to understand the role of microstructural characteristics and the development of damage; 3) to optimise rail and maintenance design as well as material design on the basis of the new insight; and 4) to propose new-generation rails with 30–50% increased lifetime, reducing the CO2-emission of ProRail by 15–25%. The research will involve both laboratory and field tests as well as microstructural research of existing and newly developed rail material. The complexity of the task requires the project to be developed in two research lines, one involved in rail and maintenance design and the other in material design, between which intensive interaction will be maintained. Knowledge on the role of microstructural features in damage development will enable the development of rail-steel grades that are less sensitive to damage formation and thus allow longer maintenance intervals, less intensive inspection procedures and longer lifetime of the rails. As a consequence of implementation of the new rail, maintenance and material design, it is expected that the lifetime of the rails can be extended. A new test rig facility is developed to study the effect of rail material changing on rolling contact conditions. The aim of the new rig is to provide an experimental framework based on the conceptual mechanism and numerical simulations which enables the researchers to generate rolling contact fatigue of rail material in laboratory scale and to validate the hypothetical predictions behind this phenomenon.

He is currently working on a project entitled by “development of high-Performance Rail through Intelligent Metallurgy and Engineering”, (PRIME) which is a multi-discipline research project relevant to computational modeling of rail elements and design under rolling contact conditions. The project is being completed at Delft University of Technology in close co-operation with the industrial partners ProRail and Tata Steel Rail.

Meysam Naeimi, MSc

PhD Researcher

+31 (0) 15 278 29 21
Building: 23, room 1.54

Edit Meysam Naeimi, MSc's profile

Close editing screen